If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2+72x+80=0
a = 12; b = 72; c = +80;
Δ = b2-4ac
Δ = 722-4·12·80
Δ = 1344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1344}=\sqrt{64*21}=\sqrt{64}*\sqrt{21}=8\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-8\sqrt{21}}{2*12}=\frac{-72-8\sqrt{21}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+8\sqrt{21}}{2*12}=\frac{-72+8\sqrt{21}}{24} $
| N+813;n=4 | | 0.11(x+3,000)=4,840 | | 2x+4(x+7)=-2 | | 87x=12 | | 4/9f=-52/4 | | -5x+2.3=(-18.8) | | x+5x+5-2x=2x+7 | | d+d+17=5 | | (M-3)(m+4)(m+1)=0 | | 3/4/12/16=36/x | | | | 10=18+4(3x+7 | | 51+c=54 | | 1-7(n-5)=92 | | | | | | | | | | | | | | | | | | | | {0.2(6x+1)}/0.4=0.5x | | | | 7x=53/9=2 | | d+d+22=6 | | | | {0.2(6x+1)}/4=0.5x | | g+68/31=6 | | 10x+42=18 | | 6.2x+5=4.6x-7 |